The Large Hadron Collider: Anton Wylie


The LHC comes at a crucial time for particle or quantum physics. In particular, it comes at a crucial time for the dominant theory, known as the Standard Model.

The Standard Model has been to modern particle physics rather what the periodic table was to 19th century chemistry. It served both to organise the known entities systematically, and as an impetus to fill in the holes in our knowledge. The Standard Model can claim to have predicted the existence of several previously unexpected particles, which were subsequently discovered experimentally. Arguably, too, it has also seeded the separate field of quantum information theory, and quantum computing.

From the point of view of having things neat and tidy, there is just one hole in the jigsaw of Standard Theory. The missing piece is the (by now surely) world-famous Higgs boson – popularly known now as the “God particle”. So named not because it could resolve the Augustinian Dilemma, but perhaps as in, “Oh God, when are we going to find it?”. More seriously, the Higgs boson could account for the mass properties of the other entities – why some have it, and some don’t. So if particle physicists observe the Higgs boson, they can effectively draw a line under 50 years or so research, slap themselves on the back, and move on.

Unfortunately, the Higgs boson has spent over 40 years hiding – ironically not because it is tiny. The Standard Model unfortunately does not predict its mass. As efforts have concentrated on manufacturing the boson in particle accelerators, its continuing elusiveness has been put down to it being big – a tad too big.

“Particle physics has other gaping explanatory holes to fill.”

Hence the LHC, which crudely speaking whizzes bits of matter to as fast a speed as possible. Experimenters let these crash into various targets to see what new interesting bits emerge. The record-breaking energies of the LHC require similarly record-breaking electro-magnets to achieve.

….Read more at The Register